

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # cffi-travis-wheel

This repository is a tool for cffi wheel deployment on pypi. It uses multibuild to build the wheels and twine to upload the wheel on pypi.

Environment setup
To upload the wheel on pypi, your pypi credential must be configured in travis or else it can be provided with twine command in travis file as well. Please have a look at below-

	Setting pypi credential as travis environment variable

	Select your package on travis.

	Go to `settings` page.

	Set environment variable `TWINE_USERNAME` and `WINE_PASSWORD` with your pypi `username` and `password`.

	Trigger the build.

	Feeding pypi credential to twine command

	Open `.travis.yml` file

	Modify twine upload command as “twine upload `-u <pypi username> -p <pypi password>` ${TRAVIS_BUILD_DIR}/wheelhouse/”*

	Trigger the build if required.

Utilities for building on Travis CI and AppVeyor

A set of scripts to automate builds of macOS and Manylinux1 wheels on the
Travis CI [https://travis-ci.org/] infrastructure, and also Windows
wheels on the AppVeyor [https://ci.appveyor.com/] infrastructure.

The Travis CI scripts are designed to build and test:

	64-bit macOS wheels built for macOS 10.9+

	64/32-bit macOS wheels built for macOS 10.6+

	64-bit manylinuxX_x86_64 wheels, both narrow and wide Unicode builds, where X is any valid Manylinux version, such as 1, or 2010

	32-bit manylinuxX_i686 wheels, both narrow and wide Unicode builds

You can currently build and test against Pythons 2.7, 3.5, 3.6, 3.7 and 3.8

The small innovation here is that you can test against Linux 32-bit builds, both
wide and narrow Unicode Python 2 builds, which was not easy on the default
Travis CI configurations.

The AppVeyor setup is designed to build and test:

	64-bit Windows win_amd64 wheels

	32-bit Windows win32 wheels

You can currently build and test against Pythons 2.7, 3.5, 3.6, 3.7, 3.8

How does it work?

Multibuild is a series of bash scripts that define bash functions to build and
test wheels.

Configuration is by overriding the default build function, and defining a test
function.

The bash scripts are layered, in the sense that they are composed of a number of scripts
which are sourced in sequence, each one potentially overriding previous ones.

macOS

The following bash scripts are sourced in this order:

multibuild/common_utils.sh
multibuild/osx_utils.sh
env_vars.sh
multibuild/configure_build.sh
multibuild/library_builders.sh
config.sh

See multibuild/travis_osx_steps.sh

The macOS build / test phases run on the macOS VM started by Travis CI.
Therefore any environment variable defined in .travis.yml or the bash
shell scripts listed above are available for your build and test.

Build options are controlled mainly by the following environment
variables:

	MB_PYTHON_VER sets the Python version targetted: major.minor.patch for CPython, or pypy-major.minor for PyPy.

	MB_PYTHON_OSX_VER sets the minimum macOS SDK version for any C extensions. For CPython targets it may be set to 10.6 or 10.9, provided a corresponding Python build is available at python.org [https://www.python.org/downloads/mac-osx/]. It defaults to the highest version available. It’s ignored for PyPy targets.

	PLAT sets the architectures built for any C extensions: x86_64 or intel for 64-bit or 64/32-bit respectively. It defaults to the same arches as the target Python version: 64-bit for CPython macOS 10.9 or PyPy, and 64/32-bit for CPython 10.6.

In most cases it’s best to rely on the defaults for MB_PYTHON_OSX_VER and PLAT, rather than setting them explicitly. Examples of exceptions to this guideline include:

	setting MB_PYTHON_OSX_VER=10.6 to build a 10.6 64/32-bit CPython wheel for Python 2.7 (default for 2.7 is 10.9 64-bit)

	setting MB_PYTHON_OSX_VER=10.6 and PLAT=x86_64 to build a 10.6 64-bit only wheel (10.6 would normally be 64/32-bit). Such a wheel would still have a platform tag of macosx_10_6_intel , advertising support for both 64 and 32-bit, but wouldnt work in 32-bit mode. This may be OK given how unlikely it is that there is still anyone actually running Python on macOS in 32-bit mode.

The build_wheel function builds the wheel, and install_run
function installs and tests it. Look in multibuild/common_utils.sh for
default definitions of these functions. See below for more details, many of which are common
to macOS and Linux.

Manylinux

The build phase is in a Manylinux Docker container, but the test phase is in
a clean container.

Build phase

Specify the Manylinux version to build for with the MB_ML_VER environment
variable. The default version is 1. Versions that are currently valid are:

	1 corresponding to manylinux1 (see PEP 513 [https://www.python.org/dev/peps/pep-0513]).

	2010 corresponding to manylinux2010 (see PEP 571 [https://www.python.org/dev/peps/pep-0571]).

	2014 corresponding to manylinux2014 and adds more architectures to PLAT
(see PEP 599 [https://www.python.org/dev/peps/pep-0599]).

The environment variable specified which Manylinux docker container you are building in.

The PLAT environment variable can be one of x86_64, i686 s390x,
ppc64le, or aarch64, specifying 64-bit x86, 32-bit x86, 64-bit s390x,
PowerPC, and ARM builds, respectively. The default is x86_64. Only x86_64
and i686 are valid on manylinux1 and manylinux2010.

multibuild/travis_linux_steps.sh defines the build_wheel function,
which starts up the Manylinux1 Docker container to run a wrapper script
multibuild/docker_build_wrap.sh, that (within the container) sources the
following bash scripts:

multibuild/common_utils.sh
multibuild/manylinux_utils.sh
env_vars.sh
multibuild/configure_build.sh
multibuild/library_builders.sh
config.sh

See docker_build_wrap.sh to review the order of script sourcing.

See the definition of build_multilinux in
multibuild/travis_linux_steps.sh for the environment variables passed from
Travis CI to the Manylinux1 container.

Once in the container, after sourcing the scripts above, the wrapper runs the
real build_wheel function, which now comes (by default) from
multibuild/common_utils.sh.

Test phase

Specify the version to test with the DOCKER_TEST_IMAGE environment
variable. The default version is dependent on PLAT:

	matthewbrett/trusty:64, for x86_64

	matthewbrett/trusty:32 for i686

	multibuild/xenial_arm64v8 for aarch64

	multibuild/xenial_ppc64le for ppc64le

	mutlibuild/xenial_s390x for s390x

Other valid values are any in https://hub.docker.com/orgs/multibuild/repositories,
using the correct platform code. Alternatively, you can use the substitution
pattern multibuild/xenial_{PLAT} in the .travis.yml file.

See multibuild/docker_test_wrap.sh.

multibuild/travis_linux_steps.sh defines the install_run function,
which starts up the testing Docker container with the wrapper script
multibuild/docker_test_wrap.sh. The wrapper script sources the following
bash scripts:

multibuild/common_utils.sh
config.sh

See docker_test_wrap.sh for script source order.

See install_run in multibuild/travis_linux_steps.sh for the
environment variables passed into the container.

It then (in the container) runs the real install_run command, which comes
(by default) from multibuild/common_utils.sh.

Standard build and test functions

The standard build command is build_wheel. This is a bash function. By
default the function that is run on macOS, and in the Manylinux container for
the build phase, is defined in multibuild/common_utils.sh. You can
override the default function in the project config.sh file (see below).

If you are building a wheel from PyPI, rather than from a source repository,
you can use the build_index_wheel command, again defined in
multibuild/common_utils.sh.

Typically, you can get away with leaving the default build_wheel /
build_index_wheel functions to do their thing, but you may need to define
a pre_build function in config.sh. The default build_wheel and
build_index_wheel functions will call the pre_build function, if
defined, before building the wheel, so pre_build is a good place to build
any required libraries.

The standard test command is the bash function install_run. The version
run on macOS and in the Linux testing container is also defined in
multibuild/common_utils.sh. Typically, you do not override this function,
but you in that case you will need to define a run_tests function, to run
your tests, returning a non-zero error code for failure. The default
install_run implementation calls the run_tests function, which you
will likely define in config.sh. See the examples below for examples of
less and more complicated builds, where the complicated builds override more
of the default implementations.

To use these scripts

	Make a repository for building wheels on Travis CI - e.g.
https://github.com/MacPython/astropy-wheels - or in your case maybe
https://github.com/your-org/your-project-wheels;

	Add this (here) repository as a submodule:

git submodule add https://github.com/matthew-brett/multibuild.git

	Add your own project repository as another submodule:

git submodule add https://github.com/your-org/your-project.git

	Create a .travis.yml file, something like this:

env:
 global:
 - REPO_DIR=your-project
 # Commit from your-project that you want to build
 - BUILD_COMMIT=v0.1.0
 # pip dependencies to _build_ your project
 - BUILD_DEPENDS="cython numpy"
 # pip dependencies to _test_ your project. Include any dependencies
 # that you need, that are also specified in BUILD_DEPENDS, this will be
 # a separate install.
 - TEST_DEPENDS="numpy scipy pytest"
 - UNICODE_WIDTH=32
 - WHEELHOUSE_UPLOADER_USERNAME=travis-worker
 # Following generated with
 # travis encrypt -r your-org/your-project-wheels WHEELHOUSE_UPLOADER_SECRET=<the api key>
 # This is for Rackspace uploads. Contact Matthew Brett, or the
 # scikit-learn team, for # permission (and the API key) to upload to
 # the Rackspace account used here, or use your own account.
 - secure:
 "MNKyBWOzu7JAUmC0Y+JhPKfytXxY/ADRmUIMEWZV977FLZPgYctqd+lqel2QIFgdHDO1CIdTSymOOFZckM9ICUXg9Ta+8oBjSvAVWO1ahDcToRM2DLq66fKg+NKimd2OfK7x597h/QmUSl4k8XyvyyXgl5jOiLg/EJxNE2r83IA="

You will likely prefer "language: generic" for travis configuration,
rather than, say "language: python". Multibuild doesn't use
Travis-provided Python but rather installs and uses its own, where the
Python version is set from the MB_PYTHON_VERSION variable. You can still
specify a language here if you need it for some unrelated logic and you
can't use Multibuild-provided Python or other software present on a
builder.
language: generic

For CPython macOS builds only, the minimum supported macOS version and
architectures of any C extensions in the wheel are set with the variable
MB_PYTHON_OSX_VER: 10.9 (64-bit only) or 10.6 (64/32-bit dual arch). By
default this is set to the highest available for the Python version selected
using MB_PYTHON_VERSION. You should only need to set this explicitly if you
are building a 10.6 dual-arch build for a CPython version where both a 10.9 and
10.6 build are available (for example, 2.7 or 3.7).
All PyPy macOS builds are 64-bit only.

Required in Linux to invoke `docker` ourselves
services: docker

Host distribution. This is the distribution from which we run the build
and test containers, via docker.
dist: xenial

matrix:
 include:
 - os: linux
 env: MB_PYTHON_VERSION=2.7
 - os: linux
 env:
 - MB_PYTHON_VERSION=2.7
 - UNICODE_WIDTH=16
 - os: linux
 env:
 - MB_PYTHON_VERSION=2.7
 - PLAT=i686
 - os: linux
 env:
 - MB_PYTHON_VERSION=2.7
 - PLAT=i686
 - UNICODE_WIDTH=16
 - os: linux
 env:
 - MB_PYTHON_VERSION=3.5
 - os: linux
 env:
 - MB_PYTHON_VERSION=3.5
 - PLAT=i686
 - os: linux
 env:
 - MB_PYTHON_VERSION=3.6
 - os: linux
 env:
 - MB_PYTHON_VERSION=3.6
 - PLAT=i686
 - os: osx
 env:
 - MB_PYTHON_VERSION=2.7
 - MB_PYTHON_OSX_VER=10.6
 - os: osx
 env:
 - MB_PYTHON_VERSION=2.7
 - os: osx
 env:
 - MB_PYTHON_VERSION=3.5
 - os: osx
 env:
 - MB_PYTHON_VERSION=3.6
 - os: osx
 env:
 - MB_PYTHON_VERSION=3.7
 - MB_PYTHON_OSX_VER=10.6
 - os: osx
 env:
 - MB_PYTHON_VERSION=3.7
 - os: osx
 env:
 - MB_PYTHON_VERSION=3.8
 - os: osx
 language: generic
 env:
 - MB_PYTHON_VERSION=pypy-5.7

before_install:
 - source multibuild/common_utils.sh
 - source multibuild/travis_steps.sh
 - before_install

install:
 # Maybe get and clean and patch source
 - clean_code $REPO_DIR $BUILD_COMMIT
 - build_wheel $REPO_DIR $PLAT

script:
 - install_run $PLAT

after_success:
 # Upload wheels to Rackspace container
 - pip install wheelhouse-uploader
 # This uploads the wheels to a Rackspace container owned by the
 # scikit-learn team, available at http://wheels.scipy.org. See above
 # for information on using this account or choosing another.
 - python -m wheelhouse_uploader upload --local-folder
 ${TRAVIS_BUILD_DIR}/wheelhouse/
 --no-update-index
 wheels

The example above is for a project building from a Git submodule. If you
aren’t building from a submodule, but want to use pip to build from a
source archive on https://pypi.org or similar, replace the first few lines
of the .travis.yml file with something like:

env:
 global:
 # Instead of REPO_DIR, BUILD_COMMIT
 - PROJECT_SPEC="tornado==4.1.1"

then your install section could look something like this:

install:
 - build_index_wheel $PROJECT_SPEC

	Next create a config.sh for your project, that fills in any steps you
need to do before building the wheel (such as building required libraries).
You also need this file to specify how to run your tests:

Define custom utilities
Test for macOS with [-n "$IS_OSX"]

function pre_build {
 # Any stuff that you need to do before you start building the wheels
 # Runs in the root directory of this repository.
 :
}

function run_tests {
 # Runs tests on installed distribution from an empty directory
 python --version
 python -c 'import sys; import yourpackage; sys.exit(yourpackage.test())'
}

Optionally you can specify a different location for config.sh file with
the $CONFIG_PATH environment variable.

	Optionally, create an env_vars.sh file to override the defaults for any
environment variables used by
configure_build.sh/library_builders.sh. In Linux, the environment
variables used for the build cannot be set in the .travis.yml file,
because the build processing runs in a Docker container, so the only
environment variables that reach the container are those passed in via the
docker run command, or those set in env_vars.sh.

As for the config.sh file, you can specify a different location for the
file by setting the $ENV_VARS_PATH environment variable. The path in
$ENV_VARS_PATH is relative to the repository root directory. For
example, if your repository had a subdirectory scripts with a file
my_env_vars.sh, you should set ENV_VARS_PATH=scripts/my_env_vars.sh.

	Make sure your project is set up to build on Travis CI, and you should now
be ready (to begin the long slow debugging process, probably).

	For the Windows wheels, create an appveyor.yml file, something like:

	https://github.com/MacPython/astropy-wheels/blob/master/appveyor.yml

	https://github.com/MacPython/nipy-wheels/blob/master/appveyor.yml

	https://github.com/MacPython/pytables-wheels/blob/master/appveyor.yml

Note the Windows test customizations etc are inside appveyor.yml,
and that config.sh and env_vars.sh are only for the
Linux/Mac builds on Travis CI.

	Make sure your project is set up to build on AppVeyor, and you should now
be ready (for what could be another round of slow debugging).

If your project depends on NumPy, you will want to build against the earliest
NumPy that your project supports - see forward, backward NumPy compatibility [https://stackoverflow.com/questions/17709641/valueerror-numpy-dtype-has-the-wrong-size-try-recompiling/18369312#18369312].
See the astropy-wheels Travis file [https://github.com/MacPython/astropy-wheels/blob/master/.travis.yml] for an
example specifying NumPy build and test dependencies.

Here are some simple example projects:

	https://github.com/MacPython/astropy-wheels

	https://github.com/scikit-image/scikit-image-wheels

	https://github.com/MacPython/nipy-wheels

	https://github.com/MacPython/dipy-wheels

Less simple projects where there are some serious build dependencies, and / or
macOS / Linux differences:

	https://github.com/MacPython/matplotlib-wheels

	https://github.com/python-pillow/Pillow-wheels

	https://github.com/MacPython/h5py-wheels

Multibuild development

The main multibuild repository is always at
https://github.com/matthew-brett/multibuild

We try to keep the master branch stable and do testing and development
in the devel branch. From time to time we merge devel into master.

In practice, you can check out the newest commit from devel that works
for you, then stay at it until you need newer features.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

